Buscar este blog

martes, 3 de febrero de 2015

Tema 17 Calor y Temperatura

17.6. a) El 22 de enero de 1943, la temperatura en Spearfish, Dakota del Sur, se elevó de 24.0 °F a 45.0 °F en sólo dos minutos. ¿Cuál fue el cambio de la temperatura en grados Celsius? b) La temperatura en Browning, Montana, fue de 44.0 °F el 23 de enero de 1916. El día siguiente la temperatura se desplomó a 256 °C. ¿Cuál fue el cambio de temperatura en grados Celsius?

17.15. Termómetro de gas de volumen constante. Usando un termómetro de gas, un experimentador determinó que la presión en el punto triple del agua (0.01 °C) era 4.80 3 104 Pa; y en el punto de ebullición normal del agua (100 °C), 6.50 3 104 Pa. a) Suponiendo que la presión varía linealmente con la temperatura, use estos datos para calcular la temperatura Celsius en la que la presión del gas sería cero (es decir, obtenga la temperatura Celsius del cero absoluto). b) ¿El gas de este termómetro obedece con precisión la ecuación (17.4)? Si así fuera y la presión a 100 °C fuera 6.50 3 104 Pa, ¿qué presión habría medido el experimentador a 0.01 °C? (Como veremos en la sección 18.1, la ecuación (17.4) sólo es exacta para gases a muy baja densidad.)

17.16. El edificio más alto del mundo, de acuerdo con ciertos estándares arquitectónicos, es el Taipei 101 en Taiwán, con una altura de 1671 pies. Suponga que esta altura se midió en un fresco día primaveral, cuando la temperatura era de 15.5 °C. Este edificio podría utilizarse como una especie de termómetro gigante en un día caluroso de verano, midiendo con cuidado su altura. Suponga que usted realiza esto y descubre que el Taipei 101 es 0.471 ft más alto que su altura oficial. ¿Cuál es la temperatura, suponiendo que el edificio está en equilibrio térmico con el aire y que toda su estructura está hecha de acero?

17.27. Un operario hace un agujero de 1.35 cm de diámetro en una placa de acero a una temperatura de 25.0 °C. ¿Qué área transversal tendrá el agujero a) a 25.0 °C; y b) si la placa se calienta a 175 °C? Suponga que el coeficiente de expansión lineal es constante dentro de este intervalo. (Sugerencia: véase el ejercicio 17.26.)

miércoles, 28 de enero de 2015

Tema 14 Mecanica de fluidos

14.5. Una esfera uniforme de plomo y una de aluminio tienen la misma masa. ¿Cuál es la razón entre el radio de la esfera de aluminio y el de la esfera de plomo?

14.7. Un tubo cilíndrico hueco de cobre mide 1.50 m de longitud, tiene un diámetro exterior de 3.50 cm y un diámetro interior de 2.50 cm. ¿Cuánto pesa?

14.9. Océanos en Marte. Los científicos han encontrado evidencia de que en Marte pudo haber existido alguna vez un océano de 0.500 km de profundidad. La aceleración debida a la gravedad en Marte es de 3.71 m>s2. a) ¿Cuál habría sido la presión manométrica en el fondo de tal océano, suponiendo que era de agua dulce? b) ¿A qué profundidad de los océanos terrestres se experimenta la misma presión manométrica?

14.11. En la alimentación intravenosa, se inserta una aguja en una vena del brazo del paciente y se conecta un tubo entre la aguja y un depósito de fluido (densidad 1050 kg>m3) que está a una altura h sobre el brazo. El depósito está abierto a la atmósfera por arriba. Si la presión manométrica dentro de la vena es de 5980 Pa, ¿qué valor mínimo de h permite que entre fluido en la vena? Suponga que el diámetro de la aguja es suficientemente grande como para despreciar la viscosidad (véase la sección 14.6) del fluido.


martes, 16 de diciembre de 2014

tema 8 momento lineal

8.21. Un cazador que se encuentra sobre un estanque congelado y sin fricción utiliza un rifle que dispara balas de 4.20 g a 965 m>s. La masa del cazador (incluyendo su rifle) es de 72.5 kg; el hombre sostiene con fuerza el arma después de disparar. Calcule la velocidad de retroceso del cazador si dispara el rifle a) horizontalmente y b) a 56.0° por encima de la horizontal.

8.63. Una esfera de acero de 40.0 kg se deja caer desde una altura de 2.00 m sobre una plancha de acero horizontal, rebotando a una altura de 1.60 m. a) Calcule el impulso que se da a la esfera en el impacto. b) Si el contacto dura 2.00 ms, calcule la fuerza media que actúa sobre la esfera durante el impacto.
https://www.youtube.com/watch?v=tENpSfYgtA0

8.79. Una pelota con masa M, que se mueve horizontalmente a 5.00 m>s, choca elásticamente con un bloque de masa 3M que inicialmente está en reposo y cuelga del techo por medio de un alambre de 50.0 cm. Determine el ángulo máximo de oscilación del bloque después del impacto.
https://www.youtube.com/watch?v=YfIUKJW-lM4


martes, 25 de noviembre de 2014

Ejercicios tema 6-7

6.8. Un carrito de supermercado cargado rueda por un estacionamiento por el que sopla un viento fuerte. Usted aplica una fuerza constante al carrito mientras éste sufre un desplazamiento ¿Cuánto trabajo efectúa la fuerza que usted aplica al carrito?

6.25. Un vagón de juguete con masa de 7.00 kg se mueve en línea recta sobre una superficie horizontal sin fricción. Tiene rapidez inicial de 4.00 m>s y luego es empujado 3.0 m, en la dirección de la velocidad inicial, por una fuerza cuya magnitud es de 10.0 N. a) Use el teorema trabajo-energía para calcular la rapidez final del vagón. b) Calcule la aceleración producida por la fuerza y úsela en las relaciones de cinemática del capítulo 2 para calcular la rapidez final del vagón. Compare este resultado con el calculado en el inciso a).

6.45. Magnetoestrella. El 27 de diciembre de 2004 los astrónomos observaron el destello de luz más grande jamás registrado, proveniente de afuera del Sistema Solar. Provenía de la estrella de neutrones altamente magnética SGR 1806-20 (una magnetoestrella). Durante 0.20 s, dicha estrella liberó tanta energía como nuestro Sol liberó durante 250,000 años. Si P es la salida de potencia media de nuestro Sol, ¿cuál era la salida de potencia media (en términos de P) de esta magnetoestrella?

7.2. Un saco de 5.00 kg de harina se levanta 15.0 m verticalmente con rapidez constante de 3.50 m>s. a) ¿Qué fuerza se requiere? b) ¿Cuánto trabajo realiza esa fuerza sobre el saco? ¿Qué pasa con dicho trabajo?

7.52. Rampa de salto en esquí. Imagine que está diseñando una rampa de salto en esquí para los siguientes Juegos Olímpicos Invernales. Necesita calcular la altura vertical h desde la puerta de salida hasta la base de la rampa. Los esquiadores se empujan con vigor en la salida de modo que, por lo regular, tienen una rapidez de 2.0 m>s al llegar a la puerta de salida. Por cuestiones de seguridad, los esquiadores no deben tener una rapidez mayor que 30.0 m>s al llegar a la base de la rampa. Usted determina que, para un esquiador de 85.0 kg bien entrenado, la fricción y la resistencia del aire efectuarán en total 4000 J de trabajo sobre él durante su descenso. Determine la altura máxima h con la que no se excederá la máxima rapidez segura.

lunes, 17 de noviembre de 2014

Movimiento circular

5.51. En la autopista un automóvil de 1125 kg y una camioneta de 2250 kg se acercan a una curva que tiene un radio de 225 m. a) ¿Con qué ángulo el ingeniero reponsable debería peraltar esta curva, de modo que los vehículos que viajen a 65.0 mi>h puedan tomarla con seguridad, sin que importe la condición de sus neumáticos? ¿Un camión pesado debería ir más lento que un auto más ligero? b) ¿Cuándo el auto y la camioneta toman la curva a 65.0 mi>h, encuentre la fuerza normal sobre cada uno debida a la superficie de la autopista.

 

Un carro que pesa 1350 kg se acerca a una curva que tiene un radio de 170 m. Con un ángulo de 13° ¿cual es la velocidad máxima segura para que puedan tomar la curva? teniendo el coche un rozamiento de u 0,17.

 

5.52. El “columpio gigante” de una feria local consiste en un eje vertical central con varios brazos horizontales unidos a su extremo superior (figura 5.57). Cada brazo sostiene un asiento suspendido de un cable de 5.00 m, sujeto al brazo en un punto a 3.00 m del eje central. a) Calcule el tiempo de una revolución del columpio, si el cable forma un ángulo de 30.08 con la vertical. b) ¿El ángulo depende del peso del pasajero para una rapidez de giro dada?

 

miércoles, 12 de noviembre de 2014

Ejercicios tema 5

5.38. Fricción de rodamiento. Dos neumáticos de bicicleta se ponen a rodar con la misma rapidez inicial de 3.50 ms en un camino largo y recto, y se mide la distancia que viaja cada una antes de que su rapidez se reduzca a la mitad. Un neumático se infló a una presión de 40 psi y avanzó 18.1 m; el otro tiene 105 psi y avanzó 92.9 m. ¿Cuánto vale el coeficiente de fricción de rodamiento mr para cada uno? Suponga que la fuerza horizontal neta sólo se debe a la fricción de rodamiento.


5.69. Salto volador de una pulga. Una película de alta velocidad (3500 cuadros/segundo) produjo ciertos datos del salto de una pulga de 210 mg, que permitieron trazar la gráfica de aceleración del insecto en función del tiempo de la figura 5.66.  La pulga tenía unos 2 mm de longitud y saltó con un ángulo de despegue casi vertical. Haga mediciones en la gráfica que le permitan contestar las siguientes preguntas.
a) ¿Qué fuerza externa neta inicial actúa sobre la pulga? Compárela con el peso de la pulga. 
b) ¿Qué fuerza externa neta máxima actúa sobre la pulga que salta? ¿Cuándo se presenta esa fuerza máxima? 
c) Según la gráfica, ¿qué rapidez máxima alcanzó la pulga?

5.70. Un cohete de 25,000 kg despega verticalmente de la superficie terrestre con aceleración constante. Durante el movimiento considerado en este problema, suponga que g se mantiene constante (véase el capítulo 12). Dentro del cohete, un instrumento de 15.0 N cuelga de un alambre que resiste una tensión máxima de 35.0 N. 
a) Determine el tiempo mínimo en que el cohete puede alcanzar la barrera del sonido (330 m/s) sin romper el alambre, y el empuje vertical máximo de los motores del cohete en tales condiciones. 
b) ¿A qué altura sobre la superficie terrestre está el cohete cuando rompe la barrera del sonido?